Jie DU (杜洁)

Research Fellow/School of Mathematical Sciences/East China Normal University

Publications in Refereed Journals (Appeared or Accepted)

  1. J. Du, S.C. Wong, C.-W. Shu, T. Xiong, M. Zhang and K. Choi, Revisiting Jiang’s dynamic continuum model for urban cities, Transportation Research Part B, v56 (2013), pp.96-119.
  2. Y.Z. Tao, Y.Q. Jiang, J. Du, S.C. Wong, P. Zhang, Y.H. Xia and K. Choi, Dynamic system-optimal traffic assignment for a city using the continuum modeling approach, Journal of Advanced Transportation, v48 (2014), pp.782-797.
  3. J. Du, C.-W. Shu and M. Zhang, A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework, Applied Numerical Mathematics, v95 (2015), pp.173-198.
  4. J. Du, S.C. Wong, C.-W. Shu and M. Zhang, Reformulating the Hoogendoorn-Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition, Transportation Research Part B, v79 (2015), pp. 189-217.
  5. J. Du, C.-W. Shu and M. Zhang, A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes, Applied Numerical Mathematics, v90 (2015), pp.146-167.
  6. J. Du and C.-W. Shu, A high order stable conservative method for solving hyperbolic conservation laws on arbitrarily distributed point clouds, SIAM Journal on Scientific Computing, v38 (2016), pp. A3094-A3128.
  7. E.T. Chung, J. Du and M.C. Yuen, An adaptive SDG method for the Stokes system, Journal of Scientific Computing, v70 (2017), pp. 766-792.
  8. J.C. Long, W.Y. Szeto, J. Du, and R.C.P. Wong, A dynamic taxi traffic assign- ment model: a two-level continuum transportation system approach, Transportation Research Part B, v100 (2017), pp. 222-254.
  9. E.T. Chung, J. Du and C.Y. Lam, Discontinuous Galerkin methods with staggered hybridization for linear elastodynamics, Computers & Mathematics with Applications, v74 (2017), pp. 1198-1214.
  10. J. Du, C.-W. Shu, Positivity-preserving high-order schemes for conservation laws on arbitrarily distributed point clouds with a simple WENO limiter, International Journal of Numerical Analysis and Modeling, v15 (2018), pp. 1-25.
  11. J. Du, E.T. Chung, An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation, Journal of Scientific Computing, (2018), pp. 1-29.
  12. J. Du, E.T. Chung, M. Lam and X. Wang, Discontinuous Galerkin method with staggered hybridization for a class of nonlinear Stokes equations, Journal of Scientific Computing, v76 (2018), pp. 1547-1577.
  13. J. Du, Y. Yang and E.T. Chung, Stability analysis and error estimates of lo- cal discontinuous Galerkin methods for convection-diffusion equations on overlapping meshes, BIT Numerical Mathematics, v59 (2019), pp.853-876.
  14. J. Du and Y. Yang, Maximum-principle-preserving third-order local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes, Journal of Computational Physics, v377 (2019), pp.117-141.
  15. J. Du, C. Wang, C. Qian and Y. Yang, High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation, SIAM Journal on Scientific Computing, v41 (2019), pp.B250-B273.
  16. J. Du, Y. Yang, Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations, Journal of Computational Physics, v395 (2019), pp.489-510.
  17. J. Du and E.T. Chung, Mortar DG method with staggered hybridization for Rayleigh waves simulation, Communications in Computational Physics, v29 (2021), pp.111-127.
  18. H. Liang, J. Du and S.C. Wong, A continuum model for pedestrian flow with explicit consideration of crowd force and panic effects, Transportation Research Part B, v149 (2021), pp. 100-117.
  19. J. Du, E.T. Chung and Y. Yang, Maximum-principle-preserving local discontinuous Galerkin methods for Allen-Cahn equations, Communications on Applied Mathematics and Computation, v4 (2022), pp.353-379. Special issue on discontinuous Galerkin methods.
  20. J. Du, C.-W. Shu and X. Zhong, An improved simple WENO limiter for discontinuous Galerkin methods solving hyperbolic systems on unstructured meshes, Journal of Computational Physics, v467 (2022), 111424.
  21. J. Du and Y. Yang, High-order bound-preserving discontinuous Galerkin methods for multicomponent chemically reacting flows, Journal of Computational Physics, v469 (2022), 111548.
  22. L. Yang, C.-W. Shu, S.C. Wong, M. Zhang, and J. Du, On the existence and uniqueness properties of the Hoogendoorn-Bovy pedestrian flow model, Transportmetrica B: Transport Dynamics, v11 (2023), pp. 912-937.
  23. T. Fan, S.C. Wong, Z. Zhang, and J. Du, A dynamically bi-orthogonal solution method for a stochastic Lighthill-Whitham-Richards traffic flow model, Computer-Aided Civil and Infrastructure Engineering, v38 (2023), pp.1447-1461.
  24. J. Du and Y. Yang, High-order bound-preserving finite difference methods for multispecies and multireaction detonations, Communications on Applied Mathematics and Computation, v5 (2023), pp.31-63, Special issue on WENO methods.
  25. J. Du, Y. Liu, and Y. Yang, An oscillation-free bound-preserving discontinuous Galerkin method for multi-component chemically reacting flows, Journal of Scientific Computing, v95 (2023), article number 90.
  26. L. Yang, H. Liang, J. Du, and S.C. Wong, Positivity-Preserving Discontinuous Galerkin Methods on Triangular Meshes for Macroscopic Pedestrian Flow Model, Journal of Advanced Transportation, v2023 (2023), article ID 7245723.
  27. C. Wu, L. Yang, J. Du, X. Pei, and S.C. Wong, Continuum dynamic traffic models with novel local route-choice strategies for urban cities, Transportation Research Part B, v181 (2024), article number 102888.
  28. J. Du, Y. Yang, and F. Zhu, Well-balanced positivity-preserving discontinuous Galerkin methods for Euler equations with gravitation, Journal of Computational Physics, v505 (2024), article number 112877.
  29. H. Liang, L. Yang, J. Du, S.C. Wong, and C.-W. Shu, Modeling crowd pressure and turbulence through a mixed-type continuum model for multidirectional pedestrian flow, Transportmetrica B: Transport Dynamics, v12 (2024), article number 2328774.
  30. L. Yang, J. Du, S.C. Wong and C.-W. Shu, Boundedly rational departure time choice in a dynamic continuum user equilibrium model for an urban city, Transportation Research Part B, v187 (2024), article number 103038.
  31. T. Fan, S.C. Wong, Z. Zhang, and J. Du, Stochastic Lighthill-Whitham-Richards traffic flow model for nonlinear speed-density relationships, Transportmetrica B: Transport Dynamics, v12 (2024), article number 2419402.

Preprints

back